Unidirectional translocation from recognition site and a necessary interaction with DNA end for cleavage by Type III restriction enzyme.
نویسندگان
چکیده
Type III restriction enzymes have been demonstrated to require two unmethylated asymmetric recognition sites oriented head-to-head to elicit double-strand break 25-27 bp downstream of one of the two sites. The proposed DNA cleavage mechanism involves ATP-dependent DNA translocation. The sequence context of the recognition site was suggested to influence the site of DNA cleavage by the enzyme. In this investigation, we demonstrate that the cleavage site of the R.EcoP15I restriction enzyme does not depend on the sequence context of the recognition site. Strikingly, this study demonstrates that the enzyme can cleave linear DNA having either recognition sites in the same orientation or a single recognition site. Cleavage occurs predominantly at a site proximal to the DNA end in the case of multiple site substrates. Such cleavage can be abolished by the binding of Lac repressor downstream (3' side) but not upstream (5' side) of the recognition site. Binding of HU protein has also been observed to interfere with R.EcoP15I cleavage activity. In accordance with a mechanism requiring two enzyme molecules cooperating to elicit double-strand break on DNA, our results convincingly demonstrate that the enzyme translocates on DNA in a 5' to 3' direction from its recognition site and indicate a switch in the direction of enzyme motion at the DNA ends. This study demonstrates a new facet in the mode of action of these restriction enzymes.
منابع مشابه
DNA looping and translocation provide an optimal cleavage mechanism for the type III restriction enzymes.
EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site-bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we ...
متن کاملDNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did...
متن کاملDissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity
DNA cleavage by the Type III Restriction-Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demo...
متن کاملDNA translocation by type III restriction enzymes: a comparison of current models of their operation derived from ensemble and single-molecule measurements
Much insight into the interactions of DNA and enzymes has been obtained using a number of single-molecule techniques. However, recent results generated using two of these techniques-atomic force microscopy (AFM) and magnetic tweezers (MT)-have produced apparently contradictory results when applied to the action of the ATP-dependent type III restriction endonucleases on DNA. The AFM images show ...
متن کاملTranslocation and specific cleavage of bacteriophage T7 DNA in vivo by EcoKI.
Infection of Escherichia coli containing the type I restriction enzyme EcoKI by bacteriophage T7 0.3 mutants leads to restriction during the late stages of genome entry and during DNA replication. Patterns of cleavage in vivo suggest that some cutting occurs near the midpoint of two recognition sites, consistent with the idea that EcoKI translocates DNA bidirectionally through itself and cuts w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 19 شماره
صفحات -
تاریخ انتشار 2004